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AN ELLIPTICAL CRACK UNDER POINT FORCES 
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A formula is obtained, by an approximate method, for determining the displacements of the surfaces of an internal elliptical 
crack in an unbounded elastic solid, when concentrated forces, equal in magnitude and opposite in direction, are applied to its 
surfaces and the line of action of the forces is perpendicular to the plane of the crack and passes through its centre. © 2000 
Elsevier Science Ltd. All rights reserved. 

Solutions exist for an internal elliptical crack in the case when the normal and shear stresses, defined 
by polynomials of arbitrary degree, are specified on its surfaces [1-3]. These solutions were constructed 
using the propertie:~ of the harmonic potentials of an elliptical disc and are characterized by a continuous 
distribution of the stresses on the crack surfaces. 

The solution for an external elliptical crack, under point forces was obtained in [4] using the scantily 
investigated Lam6 functions of the second kind. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider an unbounded linearly elastic solid with a plane internal elliptical crack (a cut). The crack is 
situated in the x 3 ---- 0 plane, in a rectangular system of coordinates xi, x2, x3, and its centre coincides 
with the origin of c, oordinates. The positive orientation S + of the crack surface S will be linked to the 
limiting value x3= 0 ÷, while the negative orientation S-  will be linked to x3 = 0-. Equal but opposite 
point forces P, the line of action of which coincides with thex3 axis (see Fig. 1), are applied to the crack 
surfaces S + and S-. 

The integral eql:Lation of crack theory in the case of a normal cleavage has the form [5, 6] 

(Y33(Xl, X 2 ) =  12 u3(Yl, y2)dyldY2 
2 ~ ( 1 - V )  Vz~S )2 , (Xj, X 2 ) E S  + 

s÷ 4 ( x l - y l  +(x2-Y2)~ (1.1) 

V=' = a 2/ax~ + a  2/ax~ 

where u3 is the displacement of the crack surface, 033 is the normal stress, ~ is the shear modulus and 
v is Poisson's ratio. 

It is assumed in (1.1) that the shear stresses 0"12 and 0"a3 on the surfaces S + and S- are zero. 
The solution of Eq. (1.1) for an internal elliptical crack is well known only when the stress 0"33 has the 
form of a polynomial. 

We will consider the case when point forces act on the crack, i.e. 

Cr~(x I, x2) = -P6(x I)6(x2), (xl, x2) • S + (1.2) 

where ~(x) is the delta function. 
We will use the ,;emi-inverse method to solve Eq.(1.1) with condition (1.2). It was used in [7, 8 ] for 

an elliptical crack iln the case when the stresses on the crack surfaces are expressed by polynomials. 
When using the semi-inverse method one must choose for the displacement u3(xl, x2) an expression 

which satisfies Eq. (1.1) with condition (1.2) and, in the limiting case when a I = a2 (at and a2 are the 
semiaxes of the boundary ellipse), gives the well-known result for a circular crack. 

The solution of Eq. (1.1) with condition (1.2) for a circular crack can be obtained by the method of 
paired integral equations. As a result we have 
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where a is the radius of the crack. 

(1.3) 

2. C O N S T R U C T I O N  OF T H E  S O L U T I O N  

In the plane x 3 = 0 we introduce the generalized polar coordinates. 

x j = a t p c o s  ~, x 2=a2psin ~ ( 0 < o < l ,  0 <q o <2 ~)  

and, by analogy with formula (1.3), the solution for an elliptical crack will be sought in the form (we 
assume a l  I> a2)  

A r Sa. 7 P(| - v )  
U3( p, dp )= - -a rc tg l ' - - ' ( 1 -p2 ) l / 2 |  p < l ;  A= 

' ~21. t r L r  _] 

¢/2 x 2 
k 2 k 2 , p2 __T+ r 2 = x ? + x  2 = a/p2(I - sin2 $), = 1 -  = - -  

t, al  ) a I a~  

(2.1) 

where 13 is a certain constant. The constant A is found from the condition that when al --+ oo and 
a2 --+ oo the elastic solid can be split into two half-spaces, unconnected with one another, loaded at the 
boundary with point forces P, in this case, as is well known [9] 

u 3 = P(I - v)/(2rc~tr) 

We will determine the quantity 13. To do this we use the variational formula for a solid with a 
crack [10, 12]. This formula, in generalized polar coordinates, has the following form for an elliptical 
crack 

8,,u3(p, ¢ )=  rc(I - v )  2~ 2------ 7 -  ~ Kiftp; p, O)Kl(cp)6n(tp)I-ll/2(tp)dtp 
0 (2.2) 

l-l(cp) = ai 2 sin 2 gl+ a~ cos 2 q) 

where 8n(~p) is the variation of the crack contour and 8nU3(p, $)  is the variation of the displacement of 
the crack surface, due to variations of the contour. 

Suppose the following condition is satisfied when the boundary contour of an elliptical crack varies 

8a 2 / 8cq = a 2 / a I = k I (2.3) 

It can be shown that in case 
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Formula (2.2) then takes the form 

6,,u.~(p, ¢ )=  

8n((p) = a2~tll"I-ll2 (q)) 

/~( I - v)a2~a I 2~ 
K,(tp; p, ~)Kl(~)d ~ (2.4) 

21a o 

We will use the well-known "test" solution, when a constant pressure, i.e. p(p, qb) = p = const, is 
applied to the surfaces of an elliptical crack. In this case we have 

u3(p ' ~ )=  ( I - v ) a 2 P ( l _ p 2 ) l / 2 ,  p_< 1, Kl(qo)= (kl)ll2pI'Ill4(~) (2.5) 
gE(k) E(k) 

where E(k) is the complete elliptic integral of the second kind. 
Using the first relation of (2.5) and taking condition (2.3) into account we obtain Bnu3(p, ~) and then, 

from (2.4), we have 

k~12(i- p2)-1/2 g 2, 
=--2a20S K,((p; p, ~)Fl'/4(cp)dcp, p < l  (2.6) 

The quantity Kl(q~; p, +) is a weighting function for the elliptical crack. 
Using (2.1) we determine the quantity Kl(qo; 0, 0), which corresponds to the application of forces 

P = 1 at the centre of the ellipse. We have 

Kl((p; 0, 0 )=  g lim u3(p' (p) ( I - v ) P  (2q) It2 ' q ---)0 (2.7) 

The function ua(p, q~) is found from (2.1) and rl is the distance between the points M and My 
The point M is situated on the contour of the crack while the point M 1 is close to the boundary of the 
crack on the inward normal to the crack contour. It can be shown that the coordinates of the point MI 
are 

x I = costO(a t -a2fiH-I/2) ,  x 2 = sintp(a 2 - atfiFl -I/2) 

where terms of  order higher in rl are neglected. Consequently 

x• x2 2"] 2r~ l_i[/2(q))+O(fi2) (2.8) 

°-P2)= a g J = a ,  a2 

Substituting (2.1) into (2.7) and using (2.8) we obtain 

g~((p; 0, 0 )=  13 

q)(q0, k )=  1+ sinZq0 (l-k2sin2qO)-J 

(2.9) 

Here we have taken into account the fact that 

and the fact that on the contour of the boundary ellipse (when 0 = 1) 
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k 

r 2 = a2(l ' k 2 sin 2 q0) 

Assuming that p = 0, + = 0 in (2.6) and substituting Kl(tp; 0, 0) from (2.9), we obtain 

~/2 ( 2 -,114 

- 2(1-k2)t/21(k) ' 

The numerical values of [3 are given below 

0 0.1 0.3 0.5 0.6 0.7 0.8 0.9 
1 0.998 0.976 0.992 0.875 0.806 0.697 0.512 

It follows from (2.9) that the stress intensity factor for an elliptical crack of normal cleavage when 
two point forces P are acting on it (directed along the x3 axis) will be 

~P 
K I - ~2a~/2 ~(~o,k) (2.11) 

The numerical values of K1 calculated from (2.11) and from formula (3.10) of [12], agree, although 
these formulae were obtained by different methods and have a different form. This, to some extent, 
confirms the correctness of expression (2.1). 

In the limiting case when al = a2 = a the crack becomes circular and formula (2.1) reduces to (1.3), 
and from (2.11) we obtain K 1 = e/(Tr2a3/2), which agrees with the well-known result. 

3. G E O M E T R I C A L  I N T E R P R E T A T I O N  

We will consider a geometrical interpretation of expression (2.11). For an elliptical crack we have 

S = rtavl 2, R = H'w2(q0)/(ala2). ds = rl~12(~p)d~p (3.1) 

where S is the area of the ellipse and R is the radius of curvature of its contour. Taking relations (3.1) 
into account we can write formula (2.11) in the form 

2 PR t/s d r  _ k 2 
El il;2/3 Si/3loro 2, Io r r° r o =al(1 sin2lp) I/2 (3.2) 

where F is the boundary contour of the crack and r0 is the distance from the centre of the crack to a 
point lying on the boundary contour. 

To check the correctness of formula (2.1) we will use the reciprocity theorem of [9] 

~ (~:,u~'dS = ~ (r~u~dS (3.3) 
S* S + 

We will consider the following two states ((xl, x2) e S ÷) 

~13  (X I ,  A" 2 ) = --/~ = consl (3.4) 
1/2 

tt'3(-rl'X2)=(l-v)a2PllpE(k) a 2 x2 a 2x2) 

,~(.h.x2) = ( l - v ) a 2 p  I x~ x 2 
p.E(k ) a~ 

t t  . - -  

C$33 (X I "  "~:2 ) -- - P S ( x ,  ) (~(x 2 ) 

P(L-v)  arctgIl3a, ( xt 2 

(3.5) 
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Substituting (3.4) and (3.5) into (3.3) and changing to generalized polar coordinates, we obtain 

1 = ( 2  ]2ni2 F(t)dt 
E(k) k ~ )  0 ( I - k 2 s i n 2 t )  t12 (3.6) 

where 

F(t)  = 

(m2 ml)l/2 arctg(m 2 - 1 )  1/2, m > 1 

1, m =  1 
nt 1 + (1 - In2) I/2 

- -  --~ ,i7~ In . . . .  - ~  7~, 
[ 2 ( 1 - m  ) l - ( 1 - m  ) 

m < l  

m = [~(1 - k 2 sin 2 t) -I/2 

The integral on the fight-hand side of (3.6) was evaluated using Gauss's quadrature formula with 
96 nodes. As a result we prove the correctness of Eq. (3.6). 

4. A C H E C K  O F  T H E  C O R R E C T N E S S  OF T H E  S O L U T I O N  

We will now make the main check. We will prove that expression (2.1) satisfies integral equation (1.1) 
with condition (1.2). i.e. we will prove that the following equality holds 

 v2!! -- (4.1) 
2 n  ~ . ,- , ,2 , - ,~}  J 

= -8(.q )&x2), (x  l , x  2 ) ~ S + 

It is obviously impossible to evaluate the integral in Eq. (4.1) in closed form. Using numerical methods 
it is better to change to elliptic coordinates u, v: 

.q = c c h u c o s u ,  x 2 = c s h u s i n v  (u~>O,O~<u ~ 2 ~ )  

,. = ( , , ~  _ 2)~/2,  (,l ~> (,2 

In elliptic coordinates Eq. (4.1) takes the form 

1 ' 02 a2 ~2~ uO 
2~ ,~T2 + ~ ]  ! d,,, ! "l--~ar~tg['~--~g("'"')l(ch~"' -~°s2v')d"' ,, t.,~r J (4 .2 )  

_ [ ~ ( v - = / 2 )  (O<~u<~uo,O<~v<<-=) 
=-6 (u )~ (u )  3= /2 )  (O<~u<~uo,E<~v ~<2=) 

r* = (,oh 2 U I -s in2vl)  I/2 

R* = [(chucosu - c h u  I cosul) 2 + (sh usinu - s h u  I sinul)2] tt2 

[({ j 
],t2 

g(ul ,v j )=  I -  , tqcos"v I+sh2uls in2vl )  

k~ = a 2 / a I, u 0 = In 1 + k 1 
k 

It is inconvenient to apply numerical methods directly to expression (4.2) since it is extremely 
difficult to obtain t]~e delta function numerically. In view of this we replace (4.2) by the following 
system 
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f. dv  t f ~ a r c t g  g(ul,v I) (ch 2 f (u 'v  ) = - ~ a  o o r' R L/~r u l -c°s2Vl)dUl  

( 3 -  3" ) 5 ( v - n / 2 )  n p n 0 < ~ v ~ < r t  

(4.3) 

(4.4) 

In  fo rmulae  (4.3) and (4.4) (u, v) ~ S +, T.C. 0 ~< u ~< u0, 0 ~< v ~< 2"rr. 
The  genera l  solution of  Poisson's  equa t ion  (4.4) can be r ep resen ted  in the fo rm of  the sum of  some 

of  its par t icular  solutions a n d  funct ions , that  are ha rmonic  inside the ellipse. A function that  is ha rmonic  
inside the ellipse can be r ep resen ted  in the following fo rm [13] 

~( chnu shnu ) 
1 ~l A,, cosnv  +B,, s innv  (4.5) 

F(u,v ) = ~ A o +,  ch nu 0 sh nu o 

T h e  coefficients An and B n are de te rmined  f rom the limiting (boundary)  condi t ion 

F(u,v )"="0 = F(u°'v ) 

Consequent~, 
(4.6) 

l 2)t 
A, =-~ ! F(uo,U )COsnudu (n =0,1,2,. . .)  

o 
(4.7) 

I 2)¢ 
B,, =-~ ! F(uo,v )sinnvdu (n= l , 2 , . . . )  

Hence ,  the general  solut ion of  Eq. (4.4) can be r ep resen ted  as follows: 

f (u ,v  ) = F(u,v ) + ~ In 1 2~ [tp(u,v )]112 (/,/,U) E S + (4.8) 

lu2 +(u - ~ / 2 )  2 when 0<~v ~<~ 

q)(It.U ) ---- ~ll2 d-(I) - 3 n / 2 )  2 when  n ~<v ~< 2n 

The  func t ion  f(u, v) was calculated f rom fo rmulae  (4.3) and (4.8) and the results were  compared .  
The  funct ion f(u, v) was calculated at a series of  points  (uj, vi) for  different  values of  the p a r a m e t e r  
k (0 ~< k % 0.9). The  e r ror  in calculating the funct ion f(u, v) using fo rmulae  (4.3) and (4.8) did not  
exceed 0.5%. 

T h e  integral  (4.3) converges  for  all points  (u, v) E S + apar t  f rom the point  u - 0, v = ~r/2 
(or  v = 3~r/2), at  which it has a logar i thmic singularity. 

As extensive numerical  calculations showed, expression (4.2) is satisfied with a high degree of accuracy. 
H e n c e  it follows that  expression (2.1) for  de te rmin ing  the d isp lacements  of  the surface of  the crack S + 
satisfies Eq. (1.1) with condi t ion (1.2). 
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